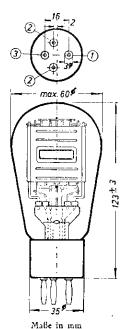

15 Watt-Senderöhre

Allgemeine Daten

Kath ode	Material	Barius Uh Ih	n, direkt == etwa	geheizt 3,8 V*) 0,6 A
Emissionsstrom	bei $U_a = U_g = 110 \text{ V} \dots$	I _e	etwa	0,3 A**)
Durchgriff	gemessen bei $I_a = 30 \text{ mA}$, $U_a = 300 \div 400 \text{ V} \dots$	D	5	÷7 %
Verstärkungsfakto	μ μ =	= 1/D	etwa	17 .
Steilheit	gemessen bei $U_a = 300 \text{ V}$, $I_a = 20 \div 40 \text{ mA} \dots$.	s	etwa	3,5 mA/V
Kapazitäten	Gitter/Anode	C _{ga} C _{gk} C _{ak}	etwa etwa etwa	9 pF 6,5 pF 5 pF
Maximale Anodenve Maximaler Hochfreg	riebsspannung	U _a Q _a Sg Ig	= = = = = = = = = = = = = = = = = = = =	400 V 15 W 0,5 A 50 mA



^{**)} Direkte Emissionsmessung gefährdet die Röhre. Messung darf nur nach Spezialmethoden erfolgen.

Max. Gewicht: 65 g

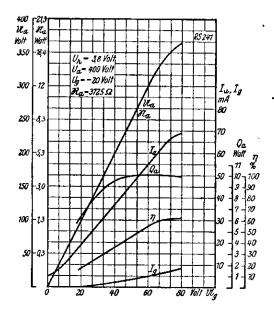
Fassung : Lg. Nr. N 355

Codewort : vci2b

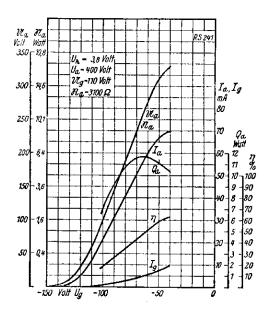
- (j) Anode
- ② Kathode
- (3) Gitter

Betriebsdaten

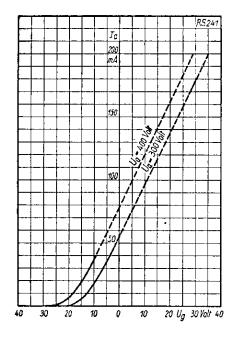
Telegrafie-Betrieb (C.Betrieb)

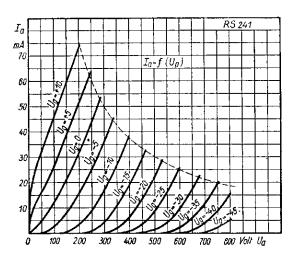

Heizspannung					$\mathrm{U_{h}}$	==	3,8	V
Anodenbetriebss	pan	nu	ng		U_a	==	400	V
Gittervorspannun	ıg.				$\mathbf{U}_{\mathbf{g}}$	==	50	\mathbf{V}_{-}
Gitterwechselspan	nnu	ng			\mathfrak{u}_{g}^{s}	=	110	V
Anodenstrom .					Ia	etwa	70	mA
Gitterstrom					I_{g}	etwa	7	mΑ
Steuerleistung .					\mathfrak{R}_{st}	etwa	0,8	W
Nutzleistung .					\mathfrak{N}_{a}	etwa	16	W
Außenwiderstand					\Re_a	=	3100	Ω

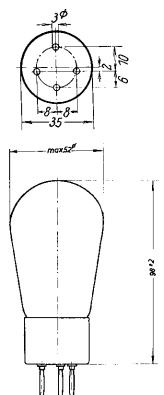
Hochfrequenzverstärkung (B:Betrieb)


Heizspannung	$U_{\mathbf{h}}$.=	3,8 V
Anodenbetriebsspannung .		_	400 V
Gittervorspannung*)	$U_{\boldsymbol{\varphi}}$		— 20 V
Max. Gitterwechselspannung			
(Scheitelwert)	$\mathfrak{u}_{\mathbf{g}}$		80 V
Anodenstrom	I a	etwa	70 mA
Gitterstrom	$I_{\mathbf{g}}$	etwa	9 mA
Außenwiderstand	$\Re_{\mathbf{a}}$	==	3725 ♀
Steuerleistung	$\mathfrak{N}_{\mathrm{st}}$	e(wa	0,7 W
Nutzleistung	\mathfrak{N}_{a}	etwa	17 W
*) Anodenruhestrom	I_{ao}	=	5 mA

Gitterspannungsmodulation


		Trägerwerte für m == 1		01	berstrichwerte
Heizspannung	$U_{\mathbf{h}}$	=	3,8	V	3,8 V
Anodenbetriebsspannung	U_a	=	400	V	400 V
Gittervorspannung	Uσ	==	— 90	V	— 50 V
Gitterwechselspannung (HF «Scheitel) Max. Niederfrequenz» wechselspannung (NF»	\mathfrak{u}_{g}	- mer	110	v	110 V
Scheitel)		etwa	40	V	_
Anodenstrom	I _a	etwa	35	mΑ	70 mA
Gitterstrom	I_g	etwa	3	mA	7 mA
Außenwiderstand	\Re_a	==	3100	Ω	3100 ♀
Steuerleistung	$\mathfrak{N}_{\mathrm{st}}$	etwa			0,8 W
Nutzleistung	\mathfrak{N}_{a}	etwa	4	W	16 W

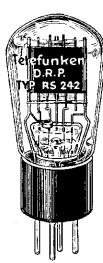

Hochfrequenzverstärkung (B. Betrieb)

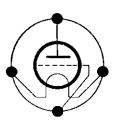

Gitterspannungsmodulation

Statische Kennlinie

Kennlinienfeld $I_a = f (U_a)$

15 W-Senderöhre

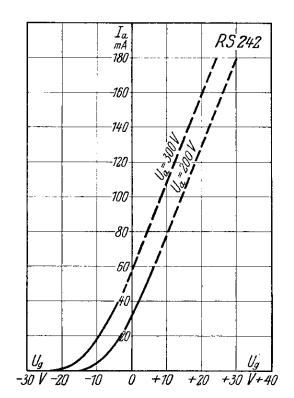

RS 242 spez. (siehe Rückseite)


Allgemeine Daten

Kathode Material Oxyd	, direkt geh	ıcizt
Heizspannung U _h Heizstrom I _h	max,	3,8 V*) 0,72 A
Emissionsstrom	•	
bei $U_a = U_g = 110 \text{ V} \dots \dots I_e$	•	0,3 A**)
Durchgriff gemessen bei $I_a=30 \text{ mA}$, $U_a=300 \text{ 1}460 \text{ V}/\text{D}$		4,5 1 7,5 %
Verstärkungsfaktor	etwa	17
Steilheit		
gemessen bei $U_a = 400 \text{ V}$, $I_a = 30 \text{ mA}$. S _{min} ,		$3.0~\mathrm{mA/V}$
Kapazitäten		
Gitter/Kathode Cgk	etwa	3,5 pF
Anode/Kathode	etwa	3,0 pF
Anode/Gitter	etwa	7,0 pF
Max. Anodenbetriebsspannung Ua		400 V
Max. Anodenverlustleistung Q	<u>*</u>	12 W
Norm. Anodenstrom	etwa	70 mA

- *) Dieser Wert ist im Betrieb einzustellen und auf $\pm~50\%$ konstant zu halten.
- **) Direkte Emissionsmessung gefährdet die Röhre. Messung darf nur nach Spezials methode erfolgen.

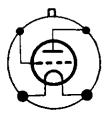
Fassung: Lg.:Nr. N 355. Gewicht: 60 g



Sockel von unten in Richtung gegen die Röhre gesehen

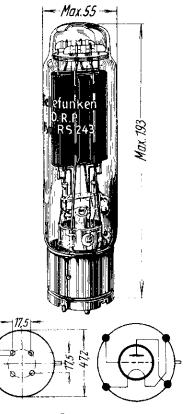
Statische Kennlinie der RS 242

Hochfrequenzverstärkung (B-Betrieb)


				_	 	· = 100 m
Heizspannung					$U_h =$	3,8 V
Anodenspannung.					$U_a =$	300 V
Gittervorspannung			•		$U_g =$	-20 V
Anodenstrom						
Nutzleistung	•	-	•	•	\mathfrak{N}_{a} etwa	12 W

RS 242 spez.

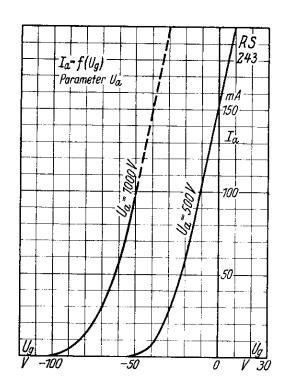
Unter der Bezeichnung RS 242 spez. besitzt die Röhre einen vierpoligen Spezialsockel.


Sockelanschlüsse der RS 242 spez. von unten in Richtung gegen die Röhre gesehen.

Fassung: Lg. Nr. 1683.

bei $\lambda \ge 100 \text{ m}$

Maße in mm Sockel von unten in Richtung gegen die Röhre gesehen

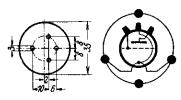

100 Watt-Senderöhre

Heizspannung	$U_{h} = 6,5V^{*})$
Max. Heizstrom	$I_h = 1,2A$
Kathode	Oxyd, direkt geheizt
Max. Anod. Betriebsspanng.	$U_a = 1000 V$
Emissionsstrom bei $U_{\mathbf{a}} = U_{\mathbf{g}} = 220 \text{ V}$	I _e etwa 0,7 A**)
Durchgriff	$D = 8,3^{\circ}/\circ$
Verstärkungsfaktor μ =	= 1/D = 12
Steilheit	S etwa 4mA/V
Max. Anodenverlustleistg.	$Q_a = 100 W$
Nutzleistung	Na etwa 100W
Norm. Anodengleichstrom	$I_{\mathbf{a}} = 0,175 \mathbf{A}$

- *) Dieser Wert ist im Betrieb einzustellen und auf ± 3% konstant zu halten.
- **) Direkte Emissionsmessung gefährdet die Röhre; Messung darf nur nach Spezialmethoden erfolgen.

Max. Gewicht: 250 g Codewort: vcjds

Statische Kennlinie der RS 243


Die RS 243 ist eine direkt geheizte Senderöhre mit Oxydkathode, die einen äußerst geringen Heizleistungsaufwand benötigt. Sie gleicht im wesentlichen der RS 237, die eine Thoriums Kathode besitzt und unterscheidet sich von dieser durch die Heizdaten.

Die RS 243 besitzt universelle Eigenschaften, sie kann als Sender und Modulatorröhre benutzt werden.

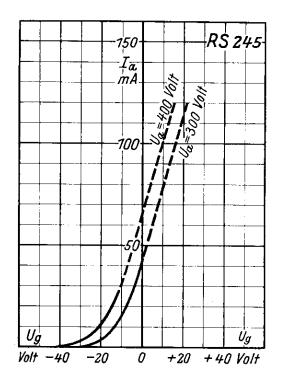
Es empfiehlt sich, von der Verwendung von Gitterwiderständen abzusehen und die Gittersvorspannung mittels konstanter Spannungsquelle fest einzustellen.

Maße in mm Sockel von unten in Richtung gegen die Sockelstifte gesehen

6 Watt-Sende-Triode

Heizspannung	$U_{\mathbf{h}}$	=	2,0 V*)
Heizstrom	Ih	etwa	1,7 A
Kathode		d, direk	t geheizt
Max. Anod. Betriebsspanng.	Ua	=	400 V
Emissionsstrom bei $U_a = U_g = 60 \text{ V}$	I.	etwa	0,12 A**)
Durchgriff g	Ď	etwa	7 º/o
Verstärkungsfaktor μ =	: 1/D	etwa	14
Max. Steilheit	S	etwa	3,0 mA/V
Max. Anodenverlustleistung	Q_a		10 W
Steuergitter=Anod.=Kapazität	$C_{ga}^{"}$	etwa	1,9 pF
Steuergitt.=Kathod.=Kapazität	C_{gk}^{ga}	etwa	1,9 pF
Anoden=Kathoden=Kapazität	C_{ak}^{r}	etwa	2,3 pF
Nutzleistung bei λ> 10 m	$\mathfrak{N}_{\mathbf{a}}$	etwa	6 W
bei $\lambda > 1,5 \text{ m}$	Na	etwa	1 W

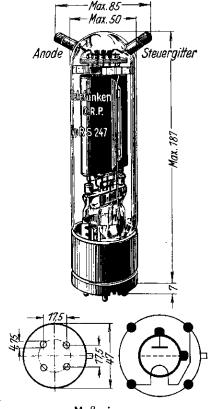
^{*)} Dieser Wert ist im Betrieb auf ± 5% konstant zu halten.


Max. Gewicht: 65 g

Fassung: Lg.=Nr. N 355

Codewort : nyayh

^{**)} Direkte Emissionsmessung gefährdet die Röhre; Messung darf nur nach Spezialmethode erfolgen.


Statische Kennlinie der RS 245

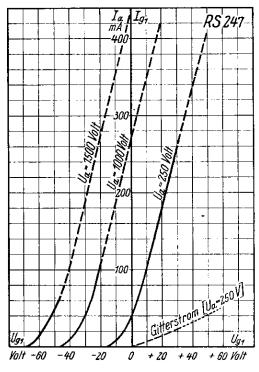
Die RS 245 ist eine Ultrakurzwellenröhre, die für die Erzeugung von Wellen bis zu 1,5 m herab geeignet ist. Sie gibt bei dieser Wellenlänge noch eine Nutzleistung von ca. 1 W ab, die sich bei Betrieb auf längeren Wellen (über 10 m) auf 6 W erhöht. Anode, Gitter und Heizfadens Mitte sind am oberen Teil der Röhre durch kurze induktionsarme Verbindungen herausgeführt. Das durch wird ein einfacher Senderaufbau und die Erzeugung sehr kurzer Wellen ermöglicht.

Die Röhre ist mit einem normalen Europasockel ausgerüstet, dessen Gitters und Anodenstift jes doch blind sind. Für die Anschlüsse am Glasskolben werden zweckmäßig keine starren Zusführungen verwendet, um die Gefahr von Beschädigungen durch eine zu starke mechanische Beanspruchung zu vermeiden.

Auf genaue Einhaltung der vorgeschriebenen Heizspannung muß geachtet werden. Größere Abweichungen als 0,1 V beeinträchtigen die Lebensdauer der Röhre.

Maße in mm Sockel, von unten in Richtung gegen die Sockelstifte gesehen

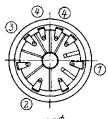
100 Watt-Senderöhre

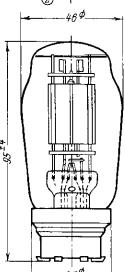

Heizspannung Max. Heizstrom Kathode	$egin{array}{l} U_h = \ I_h = \ Oxyd, \end{array}$	10,0 Volt*) 1,7 A direkt geheizt					
Max. Anod. Betriebsspanng.							
Bei Wellen über 5 m	$U_a =$	800 V					
Bei Wellen über 14 m	$U_a^a =$	1000 V					
Bei Wellen über 45 m	$U_a^a =$	1500 V					
Emissionsstrom bei $U_a = U_{g1} = 60 \text{ V}$	I _e =	0,43 A**)					
Durchgriff	D =	4 º/o					
Verstärkungsfaktor μ	= 1/D ==	25					
Max. Steilheit	S ==	8 mA/V					
Max. Anodenverlustleistg.	$Q_a =$	80 W					
Nutzleistung bei Betrieb auf Wellen über 45 m $\mathfrak{N}_a = \text{etwa } 100 \text{ W}$							

- *) Dieser Wert ist im Betrieb einzustellen und auf ± 3% konstant zu halten.
- **) Darf nicht gemessen werden.

Max. Gewicht: 220 g

Codewort : nyazi




Statische Kennlinie der RS 247

Die RS 247 ist eine 100 Watt-Senderöhre mit direkt geheizter Oxyd-Kathode. Sie ist eine ausgesprochene Kurzwellenröhre, die bis zu 5 m herab verwendbar ist. Der innere Röhrenaufbau ist durch sorgfältige Abstützungen ganz besonders stabil gehalten. Da die Kathode außerdem große Widerstandsfähigkeit besitzt, ist die Röhre gut für transportable Geräte geeignet.

Der besondere Vorteil der Röhre liegt in der großen Steilheit und der relativ sehr kleinen Steuerleistung von ca. 2 Watt. Zur Vermeidung einer Überlastung der Röhre im schwingungselosen Zustand ist es zweckmäßig, die Gittervorspannung Ug1 mindestens zum Teil einer Batterie zu entnehmen. Der Minimalwert für die Spannung dieser Batterie hängt von der Anodenbetriebsspannung ab und ist der nebenstehenden Kennlinie zu entnehmen.

Maße in mm

- (1) Anode (2) Gitter
- (3) Kathode
- (4) Heizfaden

TELEFUNKEN

RS 248

15 Watt Sendetriode

Allgemeine Daten

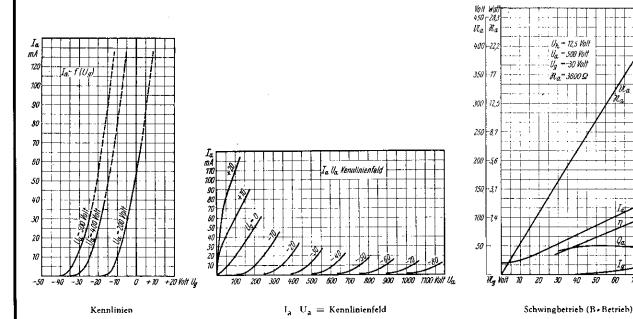
Kathode	Material	Oxyd, U _h I _h	, indirekt	geheizt 12,6 V *) 0,55 A
Emissionsstrom	bei $U_a = U_g = 40 \text{ V} \dots$	'h	etwa	0,4 A **)
Durchgriff	gemessen bei I ₂ 60 mA,		*****	,,,,,
· · · · · · · · · · · · · · · · ·	U _a 250 - 300 V		etwa	7 º/e
Verstärkungsfaktor			etwa	14,5
Steilheit	gemessen bei $U_a = 250 \text{ V}$,			
	$U_g = 0$ bis -5 V	S	min.	4,8 mA/V
Ruhestrom	bei $U_h = 12.6 \mathrm{V}, \ U_a = 250 \mathrm{V},$			
	V _g 0 V	Iao		$70 \pm 7 \text{ mA}$
Kapazitäten	Gitter/Kathode	$C_{\mathbf{gk}}$		5 — 7 pF
	Anode/Kathode	C_{ak}		3 - 5.5 pF
	Anode/Gitter	C_{ag}		4-5 pf
Maximale Anodenbet	riebsspannung	U,	_	500 V
	tzenspannung	d		900 V
Maximale Anodenver kurzzeitig (maxis	lustleistung	Q_a		15 W 20 W
	m	Ig		12 mA
Maximaler Kathoden	strom (I_a+I_g)	ικ	-	100 mA
Max. Spannung: Fac	len - Schicht	$U_{f/s}$		40 V

- *) 12,6 Volt ist die Normalheizspannung, auf die sämtliche Betriebsdaten bezogen sind. Maximal sind Heizspannungsschwankungen zwischen 11 und 13,5 Volt zugelassen, jedoch vermindert Dauerbetrieb mit diesen Grenzwerten die durchschnittliche Lebensdauer der Röhren.
- **) Messung darf nut nach Spezialmethode erfolgen.

Fassung: Lg. Nr. 9754

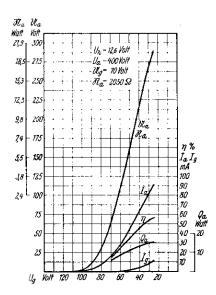
Gewicht: 55 g

Codewort : vcjhw

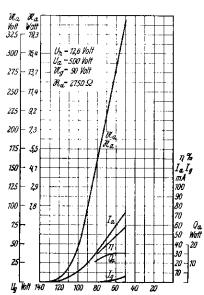

Betriebsdaten

Daten für den Schwingbetrieb (B:Betrieb)				Anodenspannungsmodulation (Trägerbedingungen)					
Anodenspannung	U_a	=	400 V	500 V	für m	= 1			
Heizspannung	$U_{\mathbf{h}}^{n}$	-	12,6 V	12,6 V	Anodenspannung	$U_{\mathbf{a}}$	max.	400 V	
Gittervorspannung	$U_{\mathbf{g}}$	==	25 V	-30 V	Gittervorspannung	Ug	etwa	-120 V	
Gitterwechselspannung (HF=Scheitelwert)		etwa	70 V	75 V	Gitterwechselspannung (HF - Scheitelwert)	u,	etwa	170 V	
Anodenstrom		etwa	70 mA	75 mA		~g			
Anodenruhestrom	I_{ao}	etwa	8 mA	13 mA	Anodenstrom	la	etwa	35 mA	
Gitterstrom	I_{φ}	=	10 mA	10 mA	Gitterstrom	$I_{\mathbf{g}}$	=	12 mA	
Steuerleistung		etwa	1 W	1 W	Steuerleistung	\mathfrak{N}_{st}	etwa	3 W	
Oberstrich » Leistung		etwa	17 W	20 W	Trägerleistung	\mathfrak{N}_{\star}	etwa	9 W	
Außenwiderstand	$\Re_{\mathbf{a}}$		2600 Ω	3600 ♀	Außenwiderstand	\Re_a	<u></u>	5800 Ω	

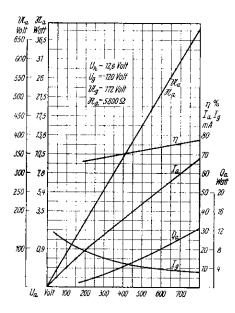
Gitterspannungsmodulation bei $\lambda > 100 \text{ m}^*$)


			Trägerwerte für m = 1	Oberstrichwerte	Trägerwerte für m == 1	Oberstrichwerte
Anodenspannung	$U_{\mathbf{a}}$	==	400 V	400 V	500 V	500 V
Gitterspannung	U_{ϱ}	==	50 V	- 25 V	-75 V	- 50 V
Gitterwechselspannung (HF=Scheitelwert)	นฐ	etwa	70 V	70 V	90 V	90 V
Gitter: Amplitude (NF)	0	=	25 V	_	25 V	_
Anodenstrom	I_a	etwa	45 mA	90 mA	38 mA	75 mA
Gitterstrom	$I_{\mathbf{g}}$	==	2 mA	12 mA	0,5 mA	6 mA
Steuerleistung	$ ilde{\mathfrak{N}}_{st}$	etwa	1 W	1 W	1 W	1 W
Nutzleistung	$\mathfrak{N}_{\mathbf{a}}$	etwa	4 W	16 W	5,5 W	20 W
Außenwiderstand	$\Re_{\mathbf{a}}$	=	2050 ♀	2050 ♀	2750 ♀	2750 ♀

^{*)} Die Röhre kann bis zu einer Wellenlänge) = 5 m betrieben werden; hierbei ist mit einer entsprechend geringeren Nutzleistung zu rechnen.



I_a.I_g mA


100 90

Gitterspannungsmodulation bei $U_a = 400V$

Gitterspannungsmodulation bei $U_a = 500 \text{ V}$

Anodenspannungsmodulation

